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Introduction



Reinforcement Learning

Reinforcement learning (RL)

studies how a world-agnostic

agent makes sequential

decisions to maximize its utility.

• The setting of stationary

world is ideal

• In real tasks other agents

in the environment have

their own goals and behave

adaptively to the ego agent

• To thrive, one needs to

influence other agents

Breakout from Atari 2600:

stationary reward, stationary

environment
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Nonstationary, Multi-Agent Settings

Multi-agent reinforcement learning

(MARL) investigates the interaction

and influence among multiple rational

RL agents

Easy settings:

• Fully cooperative, towards

consentaneous goal. No influence

needed

• Two-player zero-sum. No influence

possible.

Hard, much less charted settings:

• Almost all mixed-motive games.

Overcooked. An example

of fully cooperative AI.
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Influencing Others

Studies in computational economics have distilled two types (and

two types only) of ways to directly influence a rational,

self-interested agent

• Mechanism Design Providing tangible goods to influence the

receivers’ learning processes.

Relatively easy: Reward does not affect trajectory. Reward is

compulsory.

• Information Design Sending messages to change the

receivers’ posterior beliefs.

Relatively hard: Information immediately changes

transitions. Information can be ignored.
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Setting of this work

There are agents i , j with observations o i , o j , respectively.

• Communication: There is a message channel between them

• Mixed-motive: They are rational, self-interested, towards

different but not zero-sum goals

• Informational advantage

• o i − o j ̸= ∅
• o i − o j affects the receiver’s payoff expectation
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Example: Recommendation Letter

A bunch of students are about to enter the job market. Among

them, 1
3 are excellent and the remaining are weak.

• A professor can observe each student’s quality, while the HR

cannot (informational advantage)

• The professor can communicate with the HR (communication)

• The professor’s goal is to get more students employed, while

the HR wants to hire only excellent students (mixed-motive)

• The HR knows the strategy of the professor (commitment)
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Example: Recommendation Letter

HR

hire not hire

pro.
1, -1 0, 0 (if stu. is weak)

1, 1 0, 0 (else)

Three examples in Recommendation Letter:

• Professor reveals no information. Both agents get 0 reward.

• Professor honestly reports. Both agents get 1
3 reward.

• Professor honestly reports for excellent students, and lies for
weak students with a probability of 1

2 − ϵ (for some
0 < ϵ < 1

2)

• The professor gets 2
3 −

2
3ϵ reward;

• The HR gets 2
3ϵ reward.
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Information Design

The insight of information design is to maximize the sender’s

payoff expectation, while subjecting to the incentive compatibility

(IC, a.k.a. OC/obedience constraint) for the receiver:

max
φ

Eφ[ W
i (s, a) ]

s.t.
∑
s

P(s) · φ(a | s) ·
[
W j(s, a)−W j(s, a′)

]
≥ 0, ∀a, a′.

(1)

W i ,W j are payoff functions. P(s) is the prior probability (e.g.

students excellent/weak). φ(a|s) is the public stochastic signaling

scheme (e.g. recommendation).

The revelation principle proves that there is an optimal signaling

scheme that uses a signal space of the same size as the action

space of the receiver. Therefore a in φ(a | s) is both signal/action.
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Incentive Compatibility

A signaling scheme φ is a Bayes correlated equilibrium (BCE) of

the game if it satisfy the obedient constraints. And in this way the

rational receiver has no incentive to deviate from the sender’s

recommendation:

∑
s

µ0(s) · φ(a | s) ·
(
r j(s, a)− r j(s, a′)

)
≥ 0, ∀a′ ∈ A

⇔
∑
s

µ0(s) · φ(a | s)∑
s′
µ0(s ′) · φ(a | s ′)

·
(
r j(s, a)− r j(s, a′)

)
≥ 0, ∀a′ ∈ A

⇔
∑
s

µ(s | a) ·
(
r j(s, a)− r j(s, a′)

)
≥ 0, ∀a′ ∈ A

⇔
∑
s

µ(s | a) · r j(s, a) ≥
∑
s

µ(s | a) · r j(s, a′), ∀a′ ∈ A
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Commitment Assumption

In Bayesian persuasion, the sender will commit to a signaling

scheme first.

• The sender will determine its signaling scheme before the

game starts and publish such scheme.

• In a repeated game where a long-term sender interacts with a

sequence of short-term receivers, the commitment will

naturally emerge in equilibria. This is due to the sender’s need

to establish its reputation for credibility.

• (Instead, RL allows for organic and repeated interactions

between senders and receivers in a given environment, more

closely resembling real-world scenarios.)
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Challenges in Learning Information Design

• Non-stationarity. As the sender’s signaling scheme is
updated, the receiver’s environment also changes.

• Especially problematic in mixed-motive scenarios

• Effect on episode generation. Unlike incentive design, the

communication will affect the episode generation phase of RL.

• Persuasiveness. The sender should provide information that

the receivers are willing to respect.
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Method



Markov Signaling Games

Figure 1: An illustration of a Markov signaling game. The arrows

symbolize probability distributions, whereas the nodes denote the

sampled results.

s: state; o: observation; σ: signal; a: action;
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Extensions of MSGs: The Sender’s Action

• The sender i chooses actions ai ∈ Ai according to its policy

πi
θi
: S × Σ→ ∆(Ai ).

• Notably, the sender’s action policy considers the signals it

sends to the receivers in the same round.

• This is necessary to enable the adaptation to a variety of

receiver responses induced by the dispatched signals.
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Extensions of MSGs: Partial Observibility

Figure 2: Sender i has informational advantage over receiver j . The

information advantage is reflected by o i
t − o j

t . The receiver’s observation

in standard MSGs is turned to o i
t ∩ o j

t in every case. 15



Value Functions in MSGs

Three value functions in MSG: the state value function V (s), the

signal value function Q(s, σ), the action value function W (s, a).

• A new value function:

U i
φ,π(s, σ, a) = Eφ,π

[
G i
t | st = s, σt = σ, at = a

]
.

• No direct costs are associated with the sender transmitting

signals; The signals do not impact state transitions:

W i
φ,π(s, a) = U i

φ,π(s, σ, a).

• Bellman Equation:

V i
φ,π(s) =

∑
o
q(o | s)

∑
σ
φη(σ | s)

∑
a
πθ(a | o, σ) · U i

φ,π(s, σ, a).
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Signaling Gradient

The introduction of communication φ further complicates this

process as it involves deriving ∇ηdφ,π(s).

Lemma
Given a signaling scheme φη of the sender and a joint action policy

πθ in an MSG G, the gradient of the sender’s value function

V i
φ,π(s) w.r.t. the signaling parameters η is

∇ηV
i
φ,π(s) ∝ Eφ,π

[
W i

φ,π(s, a)∇η log πθ(a | o, σ)
]

+ Eφ,π

[
W i

φ,π(s, a)∇η logφη(σ | s)
]
.

(2)
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Signaling Gradient v.s. Policy Gradient

Signaling Gradient

∇ηV
i
φ,π(s) ∝ Eφ,π

[
W i

φ,π(s, a)∇η log πθ(a | o, σ)
]

+ Eφ,π

[
W i

φ,π(s, a)∇η logφη(σ | s)
] (3)

Policy Gradient

∇ηV
i
φ,π(s) ∝ Eφ,π

[
Q i

φ,π(s, σ) · ∇η logφη(σ | s)
]

(4)

Vanilla policy gradient will be independent of the actions taken by

the receivers and is therefore biased.
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Extended Obedience Constraints

Lemma
Given a joint observation o, the obedience constraints in MSGs are∑

s

dφ,π(s) · φη(σ | s) ·
∑
a

[
πθ(a | o, σ)− πθ(a | o, σ′)

]
·W j(s, a) ≥ 0,

(5)

for all σ, σ′ ∈ Σ, j ∈ J.

For convenience, the left-hand side of (5) is denoted as C j
φ(σ, σ′).

In the learning context, information revelation induces want of

dictatorship. Such want does not build trust and respect between

sender and receiver and instead, and inevitably drives them to the

equilibrium where signals are arbitrary and are nevertheless ignored.

Counter-intuitively, the revelation principle should be removed

under the learning context.

The extended obedience constraints remove the revelation

principle.
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Constrained Optimization

Information design in an MSG can be formalized as a constrained

optimization problem:

max
η

Eφ,π

[
V i (s)

]
s.t. C j

φ(σ, σ
′) ≥ 0, ∀j , σ, σ′.

(6)

There are various methods available to solve this constrained

optimization problem iteratively, e.g. the Lagrangian method.

η(k+1) ← η(k) +∇ηEφ,π

[
V i (s)

]
+

∑
j ,σ,σ′

λ(σ, σ′) · ∇η

(
C j
φ(σ, σ

′)
)−

,

(7)

where λ denotes non-negative Lagrangian multipliers (predefined

as hyperparameters), and (·)+ = min{0, ·}.
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Experiments



Results on Recommendation Letter

SGOC SG PG PGOC DIAL

(a) The sender’s reward (b) The receiver’s reward (c) Social welfare

Figure 3: Comparison of performance in the Recommendation Letter

experiments. (a) The sender’s rewards along the training process. (b)

The receiver’s rewards along the training process. (c) Social welfare is

defined as the sum of the sender’s reward and the receiver’s reward.
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Symmetricity of the Signaling Schemes

A Seeds B Seeds

(a) φ(1 | “W”) (b) φ(1 | “S”)

(c) π(“H” | 0) (d) π(“H” | 1)

Figure 4: (a) The prob. of signaling 1 for Weak students. (b) The prob.

of signaling 1 for Strong students. (c) The prob. of choosing to Hire

when signaled 0. (d) The prob. of choosing to Hire when signaled 1.
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Reaching Goals

(a) Reaching Goals (b) The aligned goals

Figure 5: Maps 5× 5 of Reaching Goals. The receiver (blue square) in

the map are going to reach goals. The sender gets a reward of 30 if the

receiver reaches the red square. The receiver gets a reward of 30 if it

reaches the green square. The pink dot is the sent message, and the

yellow square shows up when the red and green squares overlap. 23



Results on Reaching Goals

SGOC SG PG PGOC DIAL

(a) The sender’s reward (b) The receiver’s reward (c) Social welfare

Figure 6: Comparisons of performance in the Reaching Goals

experiments. Once the receiver reaches a goal, the corresponding agent

will receive a reward of 20. And the distance penalties are amplified

50-fold. (a) The sender’s rewards along the training process. (b) The

receiver’s rewards along the training process. (c) Social welfare is defined

as the sum of the sender’s reward and the receiver’s reward.
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Different Observation of the Receiver

No-obs Pos-obs Full-obs

(a) The sender’s reward (b) The receiver’s reward (c) Social welfare

Figure 7: Performance comparisons in Reaching Goals. Once the

receiver reaches a goal, the corresponding agent will receive a reward of

20. And the distance penalties are amplified 50-fold. (a) The sender’s

rewards along the training process. (b) The receiver’s rewards along the

training process. (c) Social welfare is defined as the sum of the sender’s

reward and the receiver’s reward.
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Future Works

• Partial Observability of the Sender. In some scenarios,

there is information that the receivers know but the sender

does not know. The sender needs to estimate it.

• Hyper Gradient for Signaling Gradient. Similar to the LIO,

the second-order gradients can also be computed. The

influence of the hyper gradient is left for future work.

• Multiple Senders. There co-exist the Stackelberg game

between multiple senders and the Stackelberg game between

senders and receivers. The game between senders needs to be

formalized and analyzed.
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Thank You!

Questions are very welcome!

Paper: https://arxiv.org/abs/2305.06807

Code: https://github.com/YueLin301/InformationDesignMARL

Baoxiang Wang (bxiangwang@gmail.com)

The Chinese University of Hong Kong, Shenzhen
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