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GPT-1 (OpenAl. 2018. “Improving language understanding by generative pre-training.”)

1. GPT-1=Decoder (in Transformer, with learnable positional encoding) + Pre-Training +
Fine-Tuning.
2. Pre-Training: Unsupervised learning. The model is trained using unlabeled data to

predict the next word. It is used to make the model to be familiar with human

common knowledge.

3. Fine-Tuning: Supervised learning. The model is trained using labeled data for specific

downstream NLP tasks.



GPT-2 (OpenAl. 2019. “Language models are unsupervised multitask learners.”)
1. GPT-2 =Decoder (in Transformer) + Pre-Training + Turning Fine-tuning to Pre-Training
+ More Parameters.
2. Enhanced pre-training. Eliminated fine-tuning.
1. The unsupervised objective of the earlier pre-training is demonstrated to be the
same as the supervised objective of the later fine-tuning.
2. The downstream tasks can be reconstructed to be descripted in the form used in
pre-training.
3. Acompetent generalist is not an agregation of narrow experts.
3. The scaling law is initially emerging: The more parameters, the better the
performance, and the improvement is very stable.

4. The Number of Parameters: 1.5B
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The Model

e “We primarily train decoder-only Transformer models, though we also train
LSTM models and Universal Transformers for comparison.”

e GPT-1is cited. Not GPT-2.



Conclusion 1
Scale vs. Model Shape

 Model performance depends most strongly on scale
» the number of model parameters N
» the size of the dataset D

» the amount of compute C

* Within reasonable limits, performance depends very weakly on other
architectural hyperparameters

* Depth vs. width.
 Multi-heads



Conclusion 2

Power-Law

 Performance has a power-law relationship with each of the three scale
factors N, D, C when not bottlenecked by the other two.

O In the given sentence, "power-law scalings" refers to a mathematical
relationship where the relationship between certain variables can be described
by a power-law function. Specifically, if two variables x and y satisfy the

following relationship:

Yy X

where « is a constant, then we say that y and x follow a power-law relationship.



The Amount of Compute C
PF-Day

* PF = Petaflop = Peta Float Operation

e 1 Peta=10e15 = —FH1{Z
* PF-Day is a unit to describe the amount of compute.

 “1 PF-day” equals 10e15 floating-point operations per second,
continuously for one day (24 hours).

e (' ~ 6N BS — an estimate of the total non-embedding training compute, where B 1s the batch size,
and S 1s the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 10'° x 24 x 3600 = 8.64 x 10! floating point operations.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of computeﬁ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

* “We observe no signs of deviation from these trends on the upper end,
though performance must flatten out eventually before reaching zero loss.”



Parameters | Data | Compute | Batch Size | Equation
N o' o' Fixed L(N)=(N.,/N)™"
00 D | Early Stop Fixed L (D)= (D./D)™"
Optimal 00 C Fixed L(C)=(C./C)™® (naive)

 Appendix A. Table 4.

« N.,D_, Cp, ay, ap, a, are constant.

Power Law Scale (tokenization-dependent)

any = 0.076 N. = 8.8 x 10%° params (non-embed)
ap = 0.095 D. = 5.4 x 103 tokens
ac = 0.057 | C, = 1.6 x 10" PF-days
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Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the pertormance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

* “If we instead use the total parameter count (including the embedding parameters) the
trend is somewhat obscured.”

* “This suggests that the embedding matrix can be made smaller without impacting
performance.”
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* Figure 8. Left.

* Although these models have been trained on the WebText2 dataset, their

test loss on a variety of other datasets is also a power-law in NV with nearly
iIdentical power, as shown in Figure 8.
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters /V 1s held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L.(/N) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (7ayer, dmodel) = (6,4288) reaches a
loss within 3% of the (48, 1600) model used in [RW.CT19].

e N is fixed.

 d means dimension. n means number. ff means feed-forward layer.




Conclusion 3

Universality of Overfitting

« “Performance improves predictably as long as we scale up N and D in
tandem.”

 “Every time we increase the model size 8x, we only need to increase the data
by roughly 5x to avoid a penalty.”



4.1 Proposed L(N, D) Equation

We have chosen the parameterization (IL3) (repeated here for convenience):

_— aN _aD

N\ oo D,
L(N, D) = (W) - (4.1)

using three principles:
1. Changes in vocabulary size or tokenization are expected to rescale the loss by an overall factor. The

parameterization of L(/N, D) (and all models of the loss) must naturally allow for such a rescaling.

2. Fixing D and sending N — oo, the overall loss should approach L(D). Conversely, fixing N and
sending D — oo the loss must approach L(N).

3. L(N, D) should be analytic at D = o0, so that it has a series expansion in 1/D with integer powers.
Theoretical support for this principle 1s significantly weaker than for the first two.

Our choice of L(/N, D) satisfies the first requirement because we can rescale N., D. with changes in the
vocabulary. This also implies that the values of N., D. have no fundamental meaning.



Test Loss

Data Size Bottleneck

Figure 9. Left
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For large D, performance is a straight

power law in /V.

For a smaller fixed D, performance stops
improving as /N increases and the model

begins to overfit.
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Overtitting
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* The extent of overfitting depends predominantly on the ratio n®/*/D | as
predicted in equation (4.3). The line is our fit to that equation.

N 1 XD

(N.\ > D,
L(N,D) = (W) =




Overfitting

We estimate that the variation in the loss with different random seeds 1s roughly 0.02, which means that to
avoid overfitting when training to within that threshold of convergence we require

D > (5 x 10°) N (4.4)

 Empirical inequation.

« Compare the variation in the loss across seeds because we do not want the
model to overfit a certain seed.



Conclusion 4

Universality of Training
* Training curves follow predictable power-laws whose parameters are roughly

independent of the model size.

* By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

* (I skip the details here.)



Conclusion 5

Sample Efficiency

* |arge models are more sample-efficient than small models, reaching the
same level of performance with fewer optimization steps (Figure 2).

Larger models require fewer samples

to reach the same performance
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The optimal model size grows smoothly

with the loss target and compute budget
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» When working with a fixed computational budget C, and there are no other
restrictions on the model size /N or available data D,

* we can achieve optimal performance by “training very large models and
stopping shortly before convergence.”

 “This approach is far more sample-efficient than the expectation of
'training small models to convergence.”



Transformers asymptotically outperform LSTMs
due to improved use of long contexts

Marginal Conclusion 1

Transformer outperforms LSTM

o Section 3.2.1. Figure 7. Left.

 GPT is used for NLG. o

Parameters (non-embedding)

 So it has to use its own output as input. Does this mean that the time
complexity is high, like RNNs”? Doesn’t this negate the advantage of
attention?

 Complexity per layer is indeed worse than Transformer, but “RNNs
struggle with long sequences mostly because of poor dependency
distance,” the advantage of attention's max path length still exists.



GPT-3

OpenAl. 2020.5. “Language Models are Few-Shot Learners.”
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GPT-3

« GPT-3 = GPT-2 + More Parameters + Larger Dataset + Sparse Attention +
Few-Shot Learning

* (The paper is more like a technical report.)



Sparse Attention

« GPT-3 = GPT-2 + More Parameters + Larger Dataset + Sparse Attention +
Few-Shot Learning

e Sparse attention

* Full attention: Calculate the similarity of the current token with all
other tokens. (Or with the token ahead of it, if it is masked.)

* |t s more efficient than full attention.



Sparse Attention Example

=

(a) Transformer (b) Sparse Transformer (strided) (¢c) Sparse Transformer (fixed)

* Figure 3 in “Generating Long Sequences with Sparse Transformers.” This paper proposed
sparse attention. And this example is for a 2D transformer.

* The sparse attention details in GPT-3 are not discussed in the paper.



Few-Shot Learning

 GPT-1: Pre-Training + Fine-Tuning. The model will be updated for new in fine-tuning
phase for specific tasks. Fine-tuning can make the model perform better in these
tasks.

 GPT-2: Pre-Training. No fine-tuning. It sees a lot of data and several specific tasks are
reconstructed to be used in pre-training phase. It is also called zero-shot learning.

 GPT-3: Pre-Training + Few-shot Learning. The user will feed it some examples of the
questions first and then ask it the true question. No update of the model is needed.

 The model can understand the task because the output is generated depending
on the input, which follows the NLG pattern of “predicting the next word.”

* |n-context learning. Prompting.



Scaling Law
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Accuracy

Scaling Law
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e Human and fine-tuned SOTA are far
better than others.

e Few-shots > one-shots > zero-shot

e Scaling law



Saturated Examples

In-Context Learning on SuperGLUE
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