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About Me

• About to be Prof. Baoxiang Wang’s PhD student this fall.


• Personal Website & Blog: https://yuelin301.github.io/


• Research Interests:


• Sequential Social Dilemma


• Multi-Agent Reinforcement Learning


• Algorithmic Game Theory (Especially in Information Design)


• Large Language Models (Beginner Level)
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Scaling Laws for Neural Language Models
OpenAI. 2020.1.



The Model

• “We primarily train decoder-only Transformer models, though we also train 
LSTM models and Universal Transformers for comparison.”


• GPT-1 is cited. Not GPT-2.



Conclusion 1

• Model performance depends most strongly on scale


• the number of model parameters 


• the size of the dataset 


• the amount of compute 


• Within reasonable limits, performance depends very weakly on other 
architectural hyperparameters 

• Depth vs. width.


• Multi-heads
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Scale vs. Model Shape



Conclusion 2

• Performance has a power-law relationship with each of the three scale 
factors , ,  when not bottlenecked by the other two.N D C

Power-Law



The Amount of Compute C
PF-Day

• PF = Petaflop = Peta Float Operation


• 1 Peta = 10e15 = ⼀千万亿


• PF-Day is a unit to describe the amount of compute.


• “1 PF-day” equals 10e15  floating-point operations per second, 
continuously for one day (24 hours).



• “We observe no signs of deviation from these trends on the upper end, 
though performance must flatten out eventually before reaching zero loss.”



• Appendix A. Table 4.


•  are constant.Nc, Dc, CC, αN, αD, αC



• “If we instead use the total parameter count (including the embedding parameters) the 
trend is somewhat obscured.”


• “This suggests that the embedding matrix can be made smaller without impacting 
performance.”



• Figure 8. Left.


• Although these models have been trained on the WebText2 dataset, their 
test loss on a variety of other datasets is also a power-law in  with nearly 
identical power, as shown in Figure 8.
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•  is fixed.


•  means dimension.  means number.  means feed-forward layer. 
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• “Performance improves predictably as long as we scale up  and  in 
tandem.”


• “Every time we increase the model size 8x, we only need to increase the data 
by roughly 5x to avoid a penalty.”
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Conclusion 3
Universality of Overfitting





• Figure 9. Left


• For large , performance is a straight 
power law in . 


• For a smaller fixed , performance stops 
improving as  increases and the model 
begins to overfit.
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• Figure 4. Left



• The extent of overfitting depends predominantly on the ratio            , as 
predicted in equation (4.3). The line is our fit to that equation.



Overfitting

• Empirical inequation.


• Compare the variation in the loss across seeds because we do not want the 
model to overfit a certain seed.



Conclusion 4
Universality of Training

• Training curves follow predictable power-laws whose parameters are roughly 
independent of the model size.


• By extrapolating the early part of a training curve, we can roughly predict the 
loss that would be achieved if we trained for much longer. (Section 5)


• (I skip the details here.)



Conclusion 5
Sample Efficiency

• Large models are more sample-efficient than small models, reaching the 
same level of performance with fewer optimization steps (Figure 2).



Conclusion 6
Convergence is Inefficient

• When working with a fixed computational budget , and there are no other 
restrictions on the model size  or available data , 


• we can achieve optimal performance by “training very large models and 
stopping shortly before convergence.” 


• “This approach is far more sample-efficient than the expectation of 
'training small models to convergence.”
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Marginal Conclusion 1
Transformer outperforms LSTM

• Section 3.2.1. Figure 7. Left. 


• GPT is used for NLG. 


• So it has to use its own output as input. Does this mean that the time 
complexity is high, like RNNs? Doesn’t this negate the advantage of 
attention?


• Complexity per layer is indeed worse than Transformer, but “RNNs 
struggle with long sequences mostly because of poor dependency 
distance,” the advantage of attention's max path length still exists.



GPT-3
OpenAI. 2020.5. “Language Models are Few-Shot Learners.”



• GPT-3 = GPT-2 + More Parameters + Larger Dataset + Sparse Attention + 
Few-Shot Learning


• (The paper is more like a technical report.)

GPT-3



• GPT-3 = GPT-2 + More Parameters + Larger Dataset + Sparse Attention + 
Few-Shot Learning


• Sparse attention 


• Full attention: Calculate the similarity of the current token with all 
other tokens. (Or with the token ahead of it, if it is masked.)


• It is more efficient than full attention.

Sparse Attention



Sparse Attention Example

• Figure 3 in “Generating Long Sequences with Sparse Transformers.” This paper proposed 
sparse attention. And this example is for a 2D transformer.


• The sparse attention details in GPT-3 are not discussed in the paper.



• GPT-1: Pre-Training + Fine-Tuning. The model will be updated for new in fine-tuning 
phase for specific tasks. Fine-tuning can make the model perform better in these 
tasks.


• GPT-2: Pre-Training. No fine-tuning. It sees a lot of data and several specific tasks are 
reconstructed to be used in pre-training phase. It is also called zero-shot learning. 

• GPT-3: Pre-Training + Few-shot Learning. The user will feed it some examples of the 
questions first and then ask it the true question. No update of the model is needed. 


• The model can understand the task because the output is generated depending 
on the input, which follows the NLG pattern of “predicting the next word.”


• In-context learning. Prompting.

Few-Shot Learning



Scaling Law

• Human and fine-tuned SOTA are far 
better than others.


• Few-shots > one-shots > zero-shot


• Scaling law



Scaling Law

• Human and fine-tuned SOTA are far 
better than others.


• Few-shots > one-shots > zero-shot


• Scaling law



Saturated Examples


