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Motivation

Existing literature on multi‐agent reinforcement learning mainly focuses on fully cooperative
scenarios. However, computational economics reveals a different aspect. It shows that an agent
can influence other agents in amixed‐motive setting by leveraging its informational advantages.

Recommendation Letter. A bunch of students are about to enter the job market. Among
them, 1

3 are excellent and the remaining are weak. A professor can observe each student’s
quality, while the HR cannot (informational advantage); The professor can communicate with
the HR (communication); The professor’s goal is to get more students employed, while the HR
wants to hire only excellent students (mixed‐motive).

HR
hire not hire

pro. 1, ‐1 0, 0 (if stu. is weak)
1, 1 0, 0 (else)

Professor reveals no information. Both agents get 0 reward.
Professor honestly reports. Both agents get 1

3 reward.
Professor honestly reports for excellent students, and lies for weak students with a
probability of 1

2− ϵ (0 < ϵ < 1
2). The professor gets 2

3−
2
3ϵ reward, and the HR gets 2

3ϵ reward.

Information Design

For information design, the core insight is to send messages to change the posterior beliefs
of the receiver, which persuades it to take actions that benefit the sender. The process of
information design can be modeled as a linear constrained optimization problem

max
φ

Eφ[ ri(s, a) ], s.t.
∑

s

µ0(s) · φ(a | s) ·
[

rj(s, a)− rj(s, a′)
]
≥ 0,∀a, a′, (1)

where µ0 is the common prior belief, ri(s, a) and rj(s, a) are the utility functions of the sender
and the receiver respectively, φ(a | s) is the sender’s signaling scheme. The constraints are
named obedience, satisfying which the rational receiver will follow the sender’s recommenda‐
tions. Because ∑

s

µ0(s) · φ(a | s) ·
(

rj(s, a)− rj(s, a′)
)
≥ 0, ∀a, a′ ∈ A

⇔
∑

s

µ0(s) · φ(a | s)∑
s′

µ0(s′) · φ(a | s′)
·
(

rj(s, a)− rj(s, a′)
)
≥ 0, ∀a, a′ ∈ A

⇔
∑

s

µ(s | a) · rj(s, a) ≥
∑

s

µ(s | a) · rj(s, a′), ∀a, a′ ∈ A

Markov Signaling Games

To formulate this communication problem, we proposed Markov signaling games (MSGs).

Figure 1. Illustration of the Markov signaling game. The arrows symbolize probability distributions, whereas the
nodes denote the sampled variables.

Experimental Environment: Reaching Goals

(a) Reaching Goals (b) The aligned goals

Figure 2. Maps 5× 5 of Reaching Goals. The blue, red, and green squares represent the receiver, the sender’s
goal, and the receiver’s goal, respectively. If the red square and the green square overlap, it will turn yellow,
meaning that the goals of agents are aligned. The pink dots represent the messages sent by the sender. The
sender is out of the map. Thus it can only get a reward when the receiver reaches the red goal.

Experiments

SGOC SG PG PGOC DIAL

(a) ri (b) rj (c) ri + rj (d) ri in 5× 5 map

(e) ri in 3× 3 map (f) rj in 3× 3 map (g) ri + rj in 3× 3 map (h) ri + rj in 5× 5 map

Figure 3. Comparisons of the performance. (a‐c) The results of Recommendation Letter. (d‐h) The results of
Reaching Goals. The rewards and penalties are amplified by 20 and 5 (12 and 3.5) respectively in 3× 3 (5× 5) map.

Value Functions and Bellman Equations in MSGs

The sender’s state value function: V i
φ,π(s) = Eφ,π

[
Gi

t | st = s
]
, where Gi

t =
∑∞

k=t γk−tri
k+1;

The sender’s signal value function: Qi
φ,π(s, σ) = Eφ,π

[
Gi

t | st = s, σt = σ
]
;

The action value function: U i
φ,π(s, σ, a) = Eφ,π

[
Gi

t | st = s, σt = σ, at = a
]
;

The marginal action value function: W i
φ,π(s, a) = Eφ,π

[
Gi

t | st = s, at = a
]

= U i
φ,π(s, σ, a).

V i
φ,π(s) =

∑
o

q(o | s)
∑
σ

φη(σ | s)
∑
a

πθ(a | o, σ) · U i
φ,π(s, σ, a);

U i
φ,π(s, σ, a) = Ri(s, a) + γ

∑
s′

p(s′ | s, a) · V i
φ,π(s′).

Signaling Gradient

The proposed signaling gradient is utilized to compute the gradient of the sender’s long‐term
expected payoff w.r.t. its signaling scheme parameters. It explicitly takes into account the chain
of the receiver’s policy and thus alleviate the non‐stationarity between agents.

Similar to the case of the policy gradient (PG), the relationship between state visitation frequency
and (φ, π) cannot be explicitly written.

Lemma 4.1. Given a signaling scheme φη of the sender and an action policy πθ of the receiver in
an MSG G, the gradient of the sender’s value function V i

φ,π(s) w.r.t. the signaling parameter η is

∇ηV i
φ,π(s) ∝ Eφ,π

[
W i

φ,π(s, a) ·
[
∇η log πθ(a | o, σ) +∇η log φη(σ | s, o)

]]
. (2)

This RL technique allows for organic and repeated interactions between far‐sighted agents in a
given environment, which lifts the commitment assumption in canonical information design.

Extended Obedience Constraints

As an analogous of (1), the prior of such information is then the occupancy measure dφ,π(s) of the
state condition on the current signaling scheme and action policy. The payoff function wj(s, a)
corresponds to the action value function W

j
φ,π(s, a) in MSGs.

Lemma 4.2. Given a receiver’s observation o, the extended obedience constraints (3) in MSGs
yield the same optimum as the obedience constraints in (1).∑

s

dφ,π(s) · φη(σ | s, o) ·
∑

a

[
πθ(a | o, σ)− πθ(a | o, σ′)

]
·W j

φ,π(s, a) ≥ 0, (3)

for all σ, σ′ ∈ Σ.
These extended constraints (denoted as Cφ

(
σ, σ′

)
) remove the revelation principle analysis from

the obedience constraints, thereby reverting the sender’s behavior from “action recommending”
to “signal sending”.

Solving the Constrained Optimization Problem in MSGs

The self‐interested sender attempts to optimize its payoff expectation in an MSG while satisfying
the extended obedience constraints. This optimization problem is

max
η

Eφ,π

[
V i

φ,π(s)
]

, s.t. Cφ(σ, σ′) ≥ 0, ∀σ, σ′. (4)

Since we are employing a learning‐based approach, it is necessary to calculate the gradient
∇ηCφ(σ, σ′). The gradient is estimated using the biased sampling method as below.

∇ηĈφ(σ, σ′) = 1
T

∑
st∈τ

[∑
a

(
πθ(a | ot, σ)− πθ(a | ot, σ′)

)
·W j

φ,π(st, a) · ∇ηφη(σ | st, ot)

]
, (5)

where τ is a sampled trajectory with T timesteps, and σ′ is randomly sampled, instead of being
sampled from the signaling scheme.

Taking the Lagrangian method as an example, The update of the signaling scheme parameters
η(k) for the k‐th iteration is

η(k+1)← η(k) +∇ηEφ,π

[
V i

φ,π(s)
]

+
∑
σ,σ′

λσ,σ′ · ∇η

(
Ĉφ(σ, σ′)

)−
, (6)

where λσ,σ′ denotes the non‐negative Lagrangian multipliers (predefined as hyperparameters),
and (·)− = min{0, ·}.
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