
A snake-inspired path planning
algorithm based on reinforcement
learning and self-motion for
hyper-redundant manipulators

Journal Title
XX(X):1–9
c⃝The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Abstract
Redundant manipulators are flexible enough to adapt to complex environments, but their controller is also required
to be specific for their extra degrees of freedom. Inspired by the morphology of snakes, we propose a path planning
algorithm named Swinging Search and Crawling Control, which allows the snake-like redundant manipulators to explore
in complex pipeline environments without collision. The proposed algorithm consists of the Swinging Search and the
Crawling Control. In Swinging Search, a collision-free manipulator configuration that of the end-effector in the target
point is found by applying reinforcement learning to self-motion, instead of designing joint motion. The self-motion
narrows the search space to the null space, and the reinforcement learning makes the algorithm use the information
of the environment, instead of blindly searching. Then in Crawling Control, the manipulator is controlled to crawl to the
target point like a snake along the collision-free configuration. It only needs to search for a collision-free configuration for
the manipulator, instead of searching collision-free configurations throughout the process of path planning. Simulation
experiments show that the algorithm can complete path planning tasks of hyper-redundant manipulators in complex
environments. The 16 DoFs and 24 DoFs manipulators can achieve 83.3% and 96.7% success rates in the pipe,
respectively. In the concentric pipe, the 24 DoFs manipulator has a success rate of 96.1%.

Keywords
redundant manipulator, path planning, reinforcement learning, self-motion, crawling control, swinging search

Introduction

In recent decades, more and more researchers have been
involved in the study of redundant manipulators to explore
complex narrow environments, such as the natural gas pipes,
sewer pipes, and tailpipes of airplanes. A manipulator is
termed kinematically redundant when it possesses more
degrees of freedom (DoFs) than it is needed to execute
a given task.1 The extra DoFs allow the manipulator to
perform complex tasks, making path planning a challenge
though.

To address the path planning of redundant manipulators,
some early researchers proposed geometric methods.
Chirikjian et al.2 proposed the backbone curve approach
for hyper-redundant robot kinematics. Later, a shape control
geometric analysis method3 was proposed by Mochiyama
H et al. to control the whole shape of a manipulator. But
such algorithms are computationally intensive. To reduce
computational complexity, Samer Yahya et al.4 proposed
geometric constraints that limit the angles between the
adjacent links to be equal. However, the flexibility of
the manipulators is also limited due to the introduced
constraints.

Other researchers proposed the method based on optimiza-
tion theory, in which obstacle avoidance can be achieved
by optimizing the objective distance function between the
manipulators and the obstacles. Matt Zucker et al.5 proposed
the Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP) method which can quickly converge with
generating a smooth collision-free trajectory. Jingdong Zhao

et al.6 applied the ant colony algorithm to plan the collision-
free optimal path of the end-effector. Thomas Collins et
al.7 proposed an optimization framework Path Planning
with Swarm Optimization (PASO) to efficiently calculate
the approximate solution of the collision-free path planning.
These methods require calculating the distance from the
manipulator to the obstacles, and therefore also require
modeling the surface of the obstacles, which is sometimes
difficult to complete.

In addition, the random sampling methods are efficient
path planning algorithms for redundant manipulators. The
Probabilistic Roadmaps (PRM) method8 proposed by
Kavraki et al. randomly samples in the configuration space
to search for collision-free configurations.9 The sampling
results are stored in a probabilistic roadmap. For any given
start and goal configurations of the manipulator, the motion
planning can be transformed into the problem of connecting
the two corresponding nodes in the roadmap.10 Compared
with the optimization theory methods, the random sampling
methods do not require figuring out the objective distance
function, which reduces the computational complexity and
improves the algorithm applicability. However, as the DoFs

Corresponding author:

Email:

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

increases, methods of this kind are also computationally
complex.

With the development of artificial intelligence, Reinforce-
ment Learning (RL) has also been applied to the path
planning of redundant manipulators. Hua et al.11 applied the
RL method to train the agent to plan the end-effector motion
and self-motion12 13 14 separately. Combining the gradient
projection method15 decouples the motion of redundant
manipulators into end-effector motion and self-motion. In
this algorithm, the agent has to learn the entire planning
process without making full use of the nature of self-motion,
which still causes great computational difficulties.

In nature, snakes crawl along the path of their heads during
crawling. Their bodies will not collide with the environment,
as long as the heads can pass smoothly. Inspired by
this biological phenomenon, this paper proposes a path
planning algorithm named Swinging Search and Crawling
Control (SSCC) for snake-like redundant manipulators. This
algorithm consists of the Swinging Search and the Crawling
Control, allowing the redundant manipulators with repetitive
modules to explore the complex pipeline environments.

By self-motion, the Swinging Search algorithm generates
collision-free configurations as the directive configurations,
in which the end-effector is in the target point. And then
the manipulator can crawl into the pipe along the directive
configurations by the Crawling Control. During crawling,
each modular link repeats the motion of the foremost
module.

The major contributions of this paper are as follows.

(i) Inspired by the biological characteristics of snakes,
this paper innovatively proposes the SSCC algorithm
for snake-like redundant manipulators to be adapted to
narrow environments such as pipes.

(ii) The SSCC algorithm has low computational complex-
ity, since only one directive configuration needs to be
searched.

(iii) The SSCC algorithm has good expansibility and adapt-
ability for modular snake-like redundant manipulators
with n universal joints.

Snake-like Redundant Manipulators

Mechanical Structure Design

In this paper, to be analogous to snakes in morphology,
the modular redundant manipulators with n universal joints
are designed. The manipulators are n×U open chains16.
Each module consists of a universal joint and a fixed-length
rigid body link, as shown in Figure 1. Modularity allows
the DoFs of the manipulators to be easily expanded by
increasing the number of modules. The Denavit-Hartenberg
(D-H) parameters of the snake-like redundant manipulators
are shown in Table 1.

Forward Kinematics

By the D-H parameters, the homogeneous transformation
matrices for kinematics are expressed as:

Link

Universal

Joint 6
Universal

Joint 5

Universal

Joint 4

Universal

Joint 3

Universal

Joint 2

Universal

Joint 1

Revolute

Joint 4

Revolute

Joint 3

Module

Figure 1. The structure of the general snake-like redundant
manipulator with 12 joints.

Table 1. The D-H parameters of the snake-like redundant
manipulators.

Joint n αi(deg) ai(m) di(m) θi(deg)

1 90 0 0 0
2 −90 l 0 0
3 90 0 0 0
4 −90 l 0 0
...

...
...

...
...

2n− 1 90 0 0 0
2n −90 l 0 0

T i+1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 ,

i = 0, 1, 2, · · · , 2n− 1
(1)

In forward kinematics, the pose of the end-effector x =[
x y z α β γ

]T
, in which the first three and the last

three variables represent the position and the orientation of
the manipulator respectively. The pose x can be calculated
as follows.

x = ffkine(q) =

2n∏
i=1

T i+1
i (2)

Where ffkine is the function of the forward kinematics,
q =

[
θ1 θ2 . . . θ2n

]T
is the joint motion vector of the

manipulators in the configuration space.

Self-Motion
The i-th column of the Jacobian Matrix ji can be calculated
by the vector product method as follows.

ji =

[
zi × ip0

E

zi

]
(3)

Where zi is the i-th axis vector; ip0
E is the vector from the

end-effector to the i-th joint. Then the Jacobian Matrix can
be represented as:

J =
[
j1 j2 . . . j2n

]
(4)

The pseudo inverse of Jacobian Matrix is defined as:

Prepared using sagej.cls

Snake-Inspired Path Planning Algorithm 3

J† = JT(JJT)−1 (5)

With the Jacobian Matrix, the end-effector velocity vector
ẋ can be expressed as a function of the joint velocity vector
q̇:

ẋ =

[
v
w

]
= Jq̇ (6)

Where v and w are the linear velocity vector and the
angular velocity vector of the end-effector, respectively.

For control purposes, it is common to solve q̇ in Eq.(6)
by specifying the desired ẋ. Since the manipulators are
redundant, the dimension of q̇ is higher than the dimension
of ẋ. In this way, Eq.(6) can be regarded as a set of
underdetermined equations, and the solution of which can
be formalized as follows.

q̇ = q̇S + q̇N

= J†ẋ+ (I − J†J)m
(7)

Where the term J†ẋ is the minimum norm solution q̇S of
Eq.(6); The term (I − J†J)m represents the homogeneous
solutions q̇N of Jq̇ = 0:

Jq̇N = J(I − J†J)m

= (J − JJ†J)m

= 0

(8)

All the homogeneous solutions form the null space of J .
In the null space, redundant manipulators can change their
configurations without changing the pose of the end-effector
which is named the self-motion. The self-motion can be used
in the gradient projection method15 to realize the obstacle
avoidance of redundant manipulators:

m = k∇H(q)

= k
[
∂H(q)
∂q1

∂H(q)
∂q2

. . . ∂H(q)
∂q2n

]T (9)

Where k is a scale factor; H is the objective function
which represents the distance between the manipulator and
obstacles; ∇H is the gradient of H . Then Eq.(7) can be
derived as follows.

q̇ = J†ẋ+ k(I − J†J)∇H (10)

By specifying ẋ and calculating ∇H , the control of
redundant manipulators can be achieved by the following
iterative equation:

q(t+∆t) = q(t) + q̇∆t (11)

Where q(t) is the current joint positions, and q(t+∆t) is
the joint positions after an iteration in the next moment.

Framework of SSCC
In this paper, a path planning algorithm named Swinging
Search and Crawling Control is proposed. Through this
algorithm, the modular redundant manipulators can reach
into the complex pipe environment without collision,
allowing the end-effector to achieve the goal pose.

SSCC algorithm consists of two units, the Swinging
Search and the Crawling Control. The Swinging Search
generates collision-free configurations by applying RL
to self-motion. The generated configurations are named
directive configurations, in which the end-effector has
reached the goal pose. In the Crawling Control, the
controlled redundant manipulator crawls into the pipe along
the directive configuration like a snake. The flow chart of
SSCC is shown in Figure 2.

Since the length of the rigid link in the module cannot
be ignored, the manipulator will inevitably deviate from
the directive configuration during the Crawling Process,
which may also cause the manipulator to collide. The
Crawling Process is deterministic, which means that the
degree of deviation can be calculated based on the
directive configuration. Therefore, we propose the maximum
deviation distance to evaluate the directive configuration to
train the agent in RL, so that the Swinging Search can
generate the directive configuration with a smaller maximum
deviation distance to reduce the possibility of collision
during crawling.

Both the Swinging Search and the Crawling Control
include collision detection. In the Swinging Search, collision
detection is used to determine whether to terminate the
search. In the Crawling Control, if a collision is detected
then the directive configuration is invalid, and the Swinging
Search should regenerate a new directive configuration.

Swinging Search

Collision-Free

Configuration

Crawling

Control

Environment

Agent

Actor

Critic

∇H

Crawling

Evaluation

r

Collision

Detection

Maximum Deviation Distance

Collision

Detection

Experience

Replay Buffer

S

Simulation

Robot

Self-

Motion

Crawling

Planned

 Path

Figure 2. The framework of Swinging Search and Crawling
Control.

In Figure 2, s is the state of the environment fed back to
the agent; ∇H is the action the agent decides to perform,
which is the gradient in Eq.(9) of the objective function
that represents the distance between the obstacle and the
manipulator; r is the reward obtained by the agent. The above
parameters will be described in detail in the State-Action
Design section.

Crawling Control

Crawling Process
The Crawling Process refers to the process in which the
manipulator M is controlled to move forward along the
directive configuration M(qd). Through this control, the
end-effector of the manipulator can reach the specified pose.

To illustrate the Crawling Process, several definitions are
made as follows, and structures are shown in Figure 3.

Prepared using sagej.cls

4 Journal Title XX(X)

(i) The modules of M(qd) that are completely or partially
inside the pipe are called the inner directive modules.

(ii) The inner directive module at the entrance of the pipe
is called the critical module. The two ends of the
critical module are denoted as p1 and p2.

(iii) Similarly, the modules of the crawling manipulator
M that are completely or partially inside the pipe are
called the inner modules.

(iv) The remaining modules of M are called the base
modules. All the base modules form the base
manipulator Mbase.

Pipe
Target

Point

the 2nd Inner

Directive Module
the Critical

Module

the 1st Inner

Directive Module

the 3rd Inner

Directive Module

(a) the Directive Configuration

Pipe

the Base Module

the 1st Inner Module

Target

Point

the Base Manipulator the 2nd Inner Module

(b) the Crawling Manipulator

Figure 3. The structures of the directive configuration and the
crawling manipulator. The solid blue polygonal line represents
the crawling manipulator. The dashed orange polygonal line
represents the directive configuration.

In the Crawling Process, the base modules and the inner
modules of M are controlled separately, as shown in Figure
4. By solving the inverse kinematics, the end of Mbase is
controlled to move from p1 to p2 within time T , while
keeping the orientation of the foremost module the same as
that of the critical module. At the same time, the universal
joint angles of the inner modules are concurrently changed
to the corresponding joint angles of their next inner directive
module. In this way, each inner module will repeat the
motion of the foremost inner module, like the movement
of a snake. In detail, suppose the number of modules to be
inserted is N and the number of modules inserted is i, then
the angles of the j-th inner module should be adjusted to the
angles of the (N − i+ j − 1)-th inner directive module.

As the modules move forward, the base modules in the
front will become the inner modules, and the control over
them will be changed, too.

For the next round of insertion, the new Mbase should
adjust the orientation of its end, and at the same time, the
newly inserted module should keep overlapping the critical

module. This can be achieved through pose interpolation of
Mbase, while planning the first inner module to move to the
last inner directive module. The Crawling Process algorithm
is summarized in Algorithm 1.

Algorithm 1 Crawling Process
Input: a directive configuration M(qd)
Output: planned motion q(t)

1: Find the critical module from the directive configuration.
2: Count the number N of modules to be inserted.
3: Control the base manipulator Mbase to reach p1.
4: for i = 0 to N do
5: Adjust the orientation of the end of Mbase, while

keeping the adjacent inner module still.
6: Insert the foremost module of Mbase to reach p2, while

adjusting the angles of the inner modules.
7: Redefine Mbase and the inner modules.
8: end for

Evaluation of Directive Configurations
The crawling manipulator M will inevitably deviate from the
directive configuration in the Crawling Process. Therefore,
we introduce the maximum deviation distance D to evaluate
the deviation.

For a specific directive configuration, the Crawling
Process will correspondingly generate a planned motion.
D is defined as the maximum distance between the inner
modules and their corresponding inner directive modules at
any moment in the planned motion.

Since each inner module will repeat the motion of the
frontmost inner module, it is only necessary to analyze
the motion of the foremost inner module to calculate the
maximum deviation distance.

Sampling e points uniformly on the foremost inner module
and calculating the distance from each point to the (N − i−
1)-th and the (N − i)-th inner directive module, as shown in
Figure 5. The distance between the foremost inner module
and its corresponding module is defined as the maximum of
these distances.

d(t, i, j) = d(sj(q(t)),MN−i(qd)) (12)

Where the sj(q(t)) indicates the j-th sampling point in
the configuration of the M at time t; the MN−i(qd) indicates
the (N − i)-th inner directive module; and the d indicates the
distance function which calculates the distance between the
sampling points and the link of the inner directive module.
Then the maximum deviation distance can be calculated as
follows.

D = max
t,0≤i≤N,1≤j≤e

{d(t, i, j), d(t, i+ 1, j)}. (13)

The algorithm of the entire Crawling Control is
summarized in Algorithm 2.

Swinging Search
By applying reinforcement learning to self-motion, the
Swinging Search generates collision-free directive configu-
rations, in which the end-effector has reached the goal pose.

Prepared using sagej.cls

Snake-Inspired Path Planning Algorithm 5

Target

Pipe

the Base anipulator

the Directive

Configuration

(a) (b) (c)

(f)(e)(d)

Figure 4. The steps of the Crawling Process.

Figure 5. The deviation in the Crawling Process. The solid blue
polygonal line represents the crawling manipulator. The dashed
orange polygonal line represents the directive configuration.
The dashed red line represents the deviation distance from
sampling points on the manipulator to the configuration.

Algorithm 2 Crawling Control
Input: a directive configuration M(qd)
Output: planned motion q(t); the maximum deviation

distance D; flagcollided

1: q(t) = CrawlingProcess(M(qd))
2: D = CrawlingEvaluation(M(qd), q(t))
3: flagcollided = CollisionDetection(q(t))

In this way, the search can make use of the environment
information, so as not to explore blindly. Applying the self-
motion also reduces the range of configurations that need to
be searched.

State-Action Design
The design of state and action has a great influence on
the convergence of RL, so the designed state and action
should reflect the relationship between the manipulator and
the environment.

To achieve self-motion to search for directive config-
urations, q̇ derived from Eq.(10) is used to control the
manipulator:

q̇ = (I − J†J)m (14)

Intuitively, we design m as the action at:

at = m =
[
m1 m2 . . . m2n

]T
(15)

And the state st is designed as:

st =
[
x y z q1 q2 . . . q2n

]T
(16)

Where qi is the joint angle of the manipulator, and[
x y z

]
is the coordinate vector of the target position that

the end-effector needs to reach.
A well-designed reward function can make the RL

algorithm converge quickly. Therefore, a reward function
consisting of penalties r′t and r′′t is proposed. We design the
number of modules that collided as a penalty r′t so that the
agent can obtain information about collisions. In this way, the
agent tends to make the manipulator avoid obstacles when
optimizing, so that it can find directive configurations more
quickly.

r′t =

n∑
i=1

Ci (17)

Ci =

{
−1 if the i-th module collided
0 else

(18)

Where reward function r′t represents the number of
modules that collided at time t; Ci is the collision situation
of the i-th module. If the i-th module collided with obstacles,
the score of the i-th joint is −1, otherwise 0.

In addition, if a directive configuration can be found,
the Swinging Search will also receive feedback from the
Crawling Control, and the maximum deviation distance will
also be used as a penalty r′′t , as follows.

r′′t =

{
−D/l if a directive configuration is searched
0 else

(19)
Where D is the maximum deviation distance from the

Crawling Control, and l is the length of the manipulator link.
Then the rt is as follows.

rt =

{
r′t + w · r′′t if a directive configuration is searched
r′t else

(20)
Where the scalar w is a scalar hyperparameter that is set

according to the number of steps are in an episode.

Prepared using sagej.cls

6 Journal Title XX(X)

Learning by Deep Deterministic Policy Gradient
The snake-like redundant manipulators used in this paper
have the characteristics of multiple DoFs and spatial
continuity of action, so it is necessary to choose an algorithm
that can solve the spatial problem of continuous action.
Lillicrap et al. presented a deep deterministic policy gradient
(DDPG)17 algorithm which can operate over continuous
action spaces, which is a good choice for this task. The
DDPG algorithm uses the Actor-Critic framework, including
the Actor network for selecting actions and the Critic
network for evaluating the policy. The update of Actor
network adopts the strategy gradient descent method, which
is specifically expressed as:

∇θJ(θ) =
1

m′

∑
i

∇ai
Q(si, ai|ω)∇θµ(si|θ)(21)

Where θ is the Actor network weight parameters is the
state, a is the action, Q is the evaluation value, and m

′

is the number of samples of empirical data. The Critic
network uses the mean square error loss function to update
the parameters:

Loss =
1

m′

∑
i

(ri + γQ′(si+1, ai+1|ω′)−Q(si, ai|ω))2(22)

Where ω is the Critic network weight parameter, γ is the
reward discount factor.

The DDPG algorithm replicates the Actor network and
the Critic network as the target network so that the agent
can learn the task strategy stably, and its network weight
parameters are expressed as θ′ and ω′ respectively. The target
network greatly enhances the stability of the learning process
when the agent is training. The specific update method of the
Actor target network is:

θ′ ← τθ + (1− τ)θ′ (23)

Where τ is used to control the update speed of the Actor
target network weight θ′.

Use the same method to update the Critic target network
parameters ω′ :

ω′ ← τω + (1− τ)ω′ (24)

In addition, the DDPG algorithm uses random noise to
increase the exploration ability of the Actor network in the
continuous action space to form a policy-map µ′:

µ′(st) = µ(st|θ) +N ′ (25)

Where N
′

is the random process of the noise.
Combined with the crawling algorithm, SSCC uses the

feasible solution obtained by the RL algorithm to complete
the exploring task. And each task can be used as empirical
data to train the model. The RL model will be more
convergent and the solution speed will be faster when after
many tasks.

The Swinging Search algorithm is summarized in
Algorithm 3.

Algorithm 3 Swinging Search

1: Initialize critic network, actor network, target critic
network and target actor network.

2: Initialize replay buffer R.
3: Initialize the manipulator and the environment.
4: for episode = 1 to M do
5: Initialize a random process for action exploration.
6: Receive initial observation state s1.
7: for t = 1 to T do
8: Select action at according to the current policy and

exploration noise.
9: Execute action at for self-motion and observe new

state st+1.
10: Detect collision and receive reward r′t
11: if no collision then
12: Output directive configuration qd at t+ 1.
13: Execute Crawling Control by inputting qd.
14: Evaluate qd and get a maximum deviation

distance D.
15: Calculate reward r′′t by D.
16: Reward rt=r′t+r

′′
t .

17: Store transition (st, at, rt, st+1) in R.
18: break
19: else
20: Reward rt=r′t.
21: Store the transition (st, at, rt, st+1) in R.
22: end if
23: Sample a random minibatch transition from R.
24: Update the critic, the actor policy and the target

networks.
25: end for
26: end for

Experiments and Analysis

System Description
The performance of the SSCC algorithm is studied through
the simulation experiment on the path planning of the snake-
like redundant manipulator. The simulation is verified in
two environments, and two manipulators are required to
move along the inner directive modules respectively in
different environments. The hardware equipment used in all
experiments in this paper is a MacBook Pro laptop (CPU
M1, RAM 16 GB). All experiments are implemented in the
software PyCharm CE, and the environment configuration
was Python 3.9.7 and Pytorch 1.8.0. We use a robotics
toolbox in python called robots-toolbox-python to model and
solve the kinematics of a hyper-redundant manipulator.

Testing Case in the Hollow Pipe
In the first experiment, the hollow pipe is set as the obstacle.
Parameters of the hollow pipe environment are shown in
Table 2. And two snake-like redundant manipulators with
different DoFs and equal total lengths are designed to verify
the SSCC method. Parameters of manipulators are shown in
Table 3.

We generated 30 target positions randomly in this exper-
iment. And the efficiency of the SSCC is analyzed using
directive configurations with different DoF manipulators,

Prepared using sagej.cls

Snake-Inspired Path Planning Algorithm 7

Table 2. The hollow pipe environment parameters.

Pipe Radius Pipe Length
Distance between

Base and Pipe

0.2m 1.4m 1.0m

Table 3. The parameters of two snake-like redundant
manipulators.

Parameter Manipulator 1 Manipulator 2

DoFs 16 24
length of links l 0.3m 0.2m

as shown in Table 4. The criterion for the success of the
SSCC algorithm is defined as successfully searching for a
set of collision-free configurations within 30 seconds and no
collision occurs during the crawling process for at least one
directive configuration. Experiments show that the success
rate of a 24 DoFs manipulator is higher than that of a 16
DoFs manipulator.

Table 4. Experimental results in the hollow pipe environment.

Manipulator 1 Manipulator 2

Target points 30 30
Success 25 29

Fail 5 1
Success rate 83.3% 96.7%

For a more detailed elaboration, we randomly selected two
samples from the two groups of experiments respectively as
the explanation examples.

The target position is at
[
1.65 −0.11 0.04

]
. The

two directive configurations of the two manipulators are
searched by the Swinging Search algorithm, where the inner
directive configuration consist of 3 modules and 5 modules,
respectively. These configurations are shown in Figure 6, and
the angles are not listed in detail due to the high redundancy
of manipulators.

Then, the Crawling Control algorithm is verified in the
simulation environment. The manipulators do not collide
with the hollow pipe when manipulators enter the hollow
pipe.

The joint angles curve of inner modules are shown in
Figure 7, and the continuous curves without abrupt change
indicate the stability of manipulator motion and verify the
effectiveness. The deviation distances are shown in Figure
8. The deviation distances will be close to 0 when the
inner manipulators overlap the corresponding inner directive
modules. The maximum deviation distance then is calculated
as the feedback to the DDPG model.

The movement processes of the snake-like redundant
manipulators are shown in Figure 9.

Testing Case in the Concentric Pipe
In the second experiment, the path planning using SSCC
in the concentric pipe is studied. The parameters of the
concentric pipe are shown in Table 5. The controlled 24 DoFs

(a) The directive configuration of 16 DoFs manipulator in the hollow
pipe.

(b) The directive configuration of 24 DoFs manipulator in the hollow
pipe.

Figure 6. The directive configurations (the solid orange
polygonal line) for 16 DoFs and 24 DoFs manipulators in the
hollow pipe.

manipulator in this experiment is the same as the second
manipulator used in the previous experiment.

Table 5. The concentric pipe environment parameters.

Pipe Pipe Radius Pipe Length
Distance between

Base and Pipe

outer pipe 0.2m 1.4m 1.0m
inner pipe 0.1m 1.4m 1.0m

We generated 52 target positions randomly in the
concentric pipe. The results are presented as shown in Table
6. The manipulator is requested to reach the target position
between the two pipes without collision. The success rate is
lower than that of the previous experiment in the pipe, but
the SSCC can still complete most of the path planning tasks.

Table 6. Experimental results in the concentric pipe
environment.

Target points Success Fail Success rate

52 50 2 96.1%

We randomly select a target point
[
1.53 0.61 −0.11

]
to elaborate the SSCC method in this complex environment.
The directive configuration is searched by the Swinging
Search, and the inner directive configuration consists of 4
modules, as shown in Figure 10. The Crawling Process of the
directive configuration is shown in Figure 11 in the complex
environment. Similarly, the continuity of the crawling is
verified by the joint angles curve shown in Figure 12. The
deviation distance is shown in Figure 13.

In summary, the high efficiency of the SSCC method
is proved. In the pipe environment, changing the 16 DoFs

Prepared using sagej.cls

8 Journal Title XX(X)

0 100 200 300 400 500

0.50

-0.50

0.25

0.00

-0.25

0.75

1.00

1.25
Jo

in
t

an
g

le
 (

ra
d

)

Iteration

(a) The joint angles curve of the 16 DoFs manipulator.

0 200 400 600 800

0.50

-0.50

0.25

0.00

-0.25

0.75

1.00

1.25

Iteration

Jo
in

t
an

g
le

 (
ra

d
)

(b) The joint angles curve of the 24 DoFs manipulator.

Figure 7. The joint angle curves of the inner modules of
manipulators in Figure 6. Since the two manipulators have too
many DoFs, only the angle curves of joints entering the hollow
pipe are shown in the figures.

0 100 200 300 400 500 600 700 800

0.04

0.00

0.03

0.02

0.01

0.06

0.05

D
ev

ia
ti

o
n

 d
is

ta
n

ce
(m

)

Iteration

Figure 8. The deviation distances of two manipulators.

manipulator to a 24 DoFs manipulator with a shorter link
length can improve search efficiency. In the concentric pipe
environment, the hyper-redundant manipulator still has a
high success rate for path planning.

Discussion
As the main advantage of the algorithm, we designed the
Crawling Control inspired by snake crawling. It makes
the Swinging Search only need planning the path of the
end-effector instead of planning the body at the same
time. What’s more, the purpose of the swinging searching
algorithm using RL is not to plan the optimal solution, but to
speed up the searching of the collision-free configurations as
the input of the Crawling Control.

The SSCC still has some limitations that we need to
discuss in detail. Because the inner modules will deviate
from the directive configuration in the Crawling Process.
And the deviation distance is cumulative. This means that
the deviation distance may be greater in the more modules
extend into the pipe. But this problem will be solved by
using the maximum deviation distance as part of the reward
function in the RL model. In addition, the Swinging Search
only plans a solution and stops, the model is not fully trained.
As the future path planning tasks continue to be completed,
the RL model will be trained to gradually converge. So that
the planner will take less time.

Conclusion
In this paper, inspired by the morphology of snakes, we
propose the SSCC algorithm for path planning. The snake-
like redundant manipulator can be controlled by using
SSCC for exploring complex environments. The snake-like
redundant manipulator of the n×U open chains is designed
to enhance adaptability. The snake’s crawling properties are
imitated by the manipulator, which makes the manipulator
move along the collision-free configuration in a special way.
Furthermore, we utilize the maximum deviation distance
to optimize the reinforcement learning model, improving
the success rate of planning collision-free configurations.
Finally, a series of adequate experiments validate that the
manipulators can explore complex environments with high
success rates by using SSCC.

References

1. Chirikjian GS, Burdick JW. A hyper-redundant manipulator.
IEEE Robotics Automation Magazine 1994; 1(4): 22-29.

2. Chirikjian GS and Burdick JW. A modal approach to hyper-
redundant manipulator kinematics. IEEE Transactions on
Robotics and Automation 1994; 10(3): 343-354.

3. Mochiyama H. Shape control of manipulators with hyper
degress of freedoms. PhD Thesis, Japan Advanced Institute
of Science and Technology, School of Information Science,
Japan, 1998.

4. Yahya S, Moghavvemi M, Yang SS, et al. Motion planning
of hyper redundant manipulators based on a new geometrical
method. In: 2009 IEEE International Conference on Industrial
Technology, Melbourne, Australia, 13-15 February 2019, pp.1-
5. IEEE.

5. Ratliff N, Zucker M, Bagnell JA, et al. CHOMP: Gradient
optimization techniques for efficient motion planning. In: 2009
IEEE International Conference on Robotics and Automation,
Kobe, Japan, 1217 May 2009, pp.489-494. IEEE.

6. Zhao J, Zhao L, Liu H. Motion planning of hyper-redundant
manipulators based on ant colony optimization. In: 2016

Prepared using sagej.cls

Snake-Inspired Path Planning Algorithm 9

(a) The Crawling Control of the 16 DoFs manipulator.

(b) The Crawling Control of the 24 DoFs manipulator.

Figure 9. The Crawling Controls for 16 DoFs and 24 DoFs manipulators in the hollow pipe.

Figure 10. The directive configuration of 24 DoFs manipulator
in the concentric environment.

IEEE International Conference on Robotics and Biomimetics,
Qingdao, China, 3-7 December 2016, pp.1250-1255. IEEE.

7. Collins T, Shen WM. PASO: an integrated, scalable PSO-based
optimization framework for hyper-redundant manipulator path
planning and inverse kinematics. Information Sciences Institute
Technical Report 2016.

8. Kavraki LE, Svestka P, Latombe JC, et al. Probabilistic
roadmaps for path planning in high-dimensional configuration
spaces. IEEE transactions on Robotics and Automation 1996;
12(4): 566-580.

9. Ghajari M F, Mayorga R V. Specialized PRM trajectory
planning for hyper-redundant robot manipulators. WSEAS
Transactions on Systems 2017; 16: 254-260.

10. Hart, Peter E, Nils J. Nilsson, et al. A formal basis for
the heuristic determination of minimum cost paths. IEEE
transactions on Systems Science and Cybernetics 1968; 4(2):
100-107.

11. Hua X, Wang G, Xu J, et al. Reinforcement learning-based
collision-free path planner for redundant robot in narrow duct.
Journal of Intelligent Manufacturing 2021; 32: 471-482.

12. Maaroof OW. Self-motion control of kinematically redundant
robot manipulators. Master Thesis, Izmir Institute of Technol-
ogy, Turkey, 2012.

13. Sciavicco L, Siciliano B. A solution algorithm to the inverse
kinematic problem for redundant manipulators. IEEE Journal
on Robotics and Automation 1988; 4(4): 403-410.

14. Benzaoui M, Chekireb H. Redundant robot manipulator control
with obstacles avoidance using self-motion approach. In:
Proceedings of the 13th IASTED international conference on
robotics and applications Wurzburg, Germany, 29-30 August
2007, pp.21-26.

15. Liegeois, Alain. Automatic supervisory control of the
configuration and behavior of multibody mechanisms. IEEE
transactions on systems, man, and cybernetics 1977; 7(12):
868-871.

16. Lynch KM, Park FC. Modern robotics. Cambridge: Cambridge
University Press, 2017, p.16.

17. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Prepared using sagej.cls

10 Journal Title XX(X)

(a) (b) (c) (d)

(e) (f) (h) (g)

Figure 11. The Crawling Process of the 24 DoFs manipulator in the concentric environment.

0 100 200 300 400 500 600 700

Jo
in

t
an

g
le

 (
ra

d
)

1.0

-1.0

0.5

0.0

-0.5

Iteration

Figure 12. The joint angles curve of the inner modules of the
24 DoFs manipulator in the concentric environment.

0 100 200 300 400 500 600

0.08

0.00

0.06

0.04

0.02D
ev

ia
ti

o
n

 d
is

ta
n

ce
(m

)

Iteration

Figure 13. The maximum deviation distance change curve.

Prepared using sagej.cls

	Introduction
	Snake-like Redundant Manipulators
	Mechanical Structure Design
	Forward Kinematics
	Self-Motion

	Framework of SSCC
	Crawling Control
	Crawling Process
	Evaluation of Directive Configurations

	Swinging Search
	State-Action Design
	Learning by Deep Deterministic Policy Gradient

	Experiments and Analysis
	System Description
	Testing Case in the Hollow Pipe
	Testing Case in the Concentric Pipe

	Discussion
	Conclusion

